XINLEI COMPRESSOR CO., LTD.

Add: No.8, Chaoping Street, East Industry Center, Wenling, Taizhou City, Zhejiang Province, China Zip Code: 317511 WhatsApp: +86 19579673005 Email: xinleiglobal@xinlei.com Web: www.xinlei.com/en/

All the trademarks mentioned in this catalog belong to Xinlei compressor co., ltd and its affiliated companies or related owners.

The information description in this catalog is not suitable for all situations due to the difference of time and recipient. The specific information shall be implemented according to the contract.

The models and technical parameters provided in this catalog are subject to the actual pro ducts and may be changed without notice. Thanks for understanding. Please contact the sales person for more product information and service materials, Xinlei reserves the right of final interpretation of this catalog.

Xinlei official website Xinlei Wechat subscription Xinlei Tik Tok enterprise

202503

S S

MAGNETIC LEVITATION VARIABLE FREQUENCY CENTRIFUGAL HEAT PUMP UNIT

- High efficiency • and energy saving
- low noise and silence
- intelligent control
- low carbon and environmental protection

STOCK CODE 301317

Xinlei Group is a professional manufacturer of intelliger HVAC equip

Zhejiang, and was listed on the main board of the Shenzhen ompany was establis 3. As a leading enterprise in the industry, Xinlei's independent hange on January 19, and development and production products span the piston, screw magnetic levitation centrifuall-fluid sector.

All kinds of magnetic levitation central air conditioning, air energy central heat pump and other air energy products in continuous innovation to achieve high energy efficiency breakthroughs, access to authorized patents, was named the national "specialized, special and new" small giant more enterprises, up to now, Xinlei has more than 800 distribution outlets in more than 100 countries and regions around the world, our energy-saving equipment and intelligent solutions have been widely recognized by the market and customer partners.

Over the years, the company has been providing customers with a comfortable, energy-saving, environmentally friendly and convenient indoor environment, with the service tenet of "innovation reflects value", and serves every customer attentively. The company has many experienced pre-sales, in-sales, er-sales service personnel, and strong team technical capabilities, creating a new world of "energy ing, environmental protection and intelligence" in the aerodynamic city.

1876

The world's first air conditioner was born in the United States

In the 20 years since the invention of air conditioning, it has always been machines, not people, that have enjoyed air conditioning

1996

Xinlei brand was founded in the era of the national "Ninth Five-Year Plan" economic take-off

2000

Xinlei's self-developed and self-produced aerodynamic products entered the European and American markets

2006

Faced the "EU anti-dumping" lawsuit and won the preliminary ruling

The daily output is 12,000 units, accounting for more than 56% of the customs export data

2017

Comprehensively layout the air/magnetic levitation centrifuge market and has made the first breakthrough

2020

It has increased production by 30% and saved energy by 50% for Sinopec, which has taken a major step on the road of "domestic substitution" of high-end air energy manufacturing

2022

Xinlei's first maglev inverter centrifugal chiller (heat pump) unit was launched, with an energy-saving rate of up to 50%, triggering a new revolutionary journey in the industry

2023

Xinlei was successfully listed Stock code 301317 Xinlei heat pump has achieved a breakthrough in high energy efficiency in continuous innovation The 300RT and 1000RT water-cooled chilled water (heat pump) unit test benches have passed the certification of the National Testing Center

XINLE

It is a high-tech enterprise committed to providing high-tech products and smart HVAC solutions for demand industries

focusing on providing sma overall solutions and related products services for various demand ndustries with the fundamental startt of solving user needs. ng poin

Water and ground source heat pump units

Surface water source

land management water underground water source

public buildings

commercial services

polluted water

Magnetic levitation frequency conversion centrifugal heat pump unit

agricultural insulation

Aquaculture

secondary pipe network

residential buildings

commercial buildings

B CREW COMPOSITION

Magnetic Levitation Variable Frequency Centrifugal Heat Pump Unit

It is mainly composed of magnetic levitation centrifugal compressor, evaporator, condenser, economizer, adjustable flow valve, airborne inverter and automatic control system. The compressor adopts magnetic bearing, no need for lubricating oil, no need to worry about oil return limit, "0" friction, high efficiency, stable and reliable.

Control cabinets

-PLC electronic control system, real-time monitoring of system operation data and trajectory, multiple protection and early warning; -Internet of Things database management, the establishment of a background service platform, and modular management of equipment energy efficiency;

Intelligent operator panel

-Touch control screen, providing users with an intuitive interface, simple and convenient operation; -Cloud remote monitoring, automatic fault alarm, easy to analyze the cause of failure;

• • •

XINLEI

Magnetic levitation centrifugal compressor

-Two-stage compression, large surge margin, wider operating range;

-The impeller is horizontally opposed, and the axial force is small; -Frequency conversion direct drive, low starting current, high unit efficiency;

-Magnetic bearing, running **0 friction**, no attenuation of efficiency; -Stepper motor + guide vane mechanism is built-in, with accurate mechanical limit and high reliability.

Flash economizer

-The unit adopts two-stage compression and make-up gas enthalpy enhancement technology, which is 6% more efficient than that of single-stage refrigeration circulation system.

High-efficiency heat exchanger

-The heat exchanger adopts high-efficiency heat exchange tubes, and the inner and outer walls are strengthened for heat transfer to obtain excellent performance; -Optimize the structure of the heat exchanger to effectively improve the heat exchange efficiency;

Electronic level gauge

-Real-time monitoring of the liquid level, automatic adjustment of the throttle valve opening, to ensure the stable and reliable operation of the system.

 $\uparrow\uparrow\uparrow$

0000000000000

00000000000

 $\uparrow\uparrow\uparrow$

Product Technical Advantages

Wide-range, high-PR compressor for heat pumps

- The unit adopts frequency conversion speed control + imported guide vane (lGV) to jointly regulate the cooling capacity, which can realize 10%~100% cooling capacity regulation for regular working conditions without hot gas bypass.
- The MRc-H series compressor has a rated pressure ratio of 4.2 and a maximum pressure ratio of 6.0, and can be used in wateiand ground source high-temperature heat pumps, energy tower heat pumps, air-cooled heat pumps, ice storage and othelscenarios.
- 70 65 60 C 55 SDT 50 45 40 35 30 25 20 15 10
- Multi-condition design, capable of providing the triple-supply of cooling, heating, and domestic hot water, with a maximum outlet water temperature of <mark>65°C</mark>.

Full range of Class 1 energy efficiency

*The data in the above figure comes from the high-efficiency series units

Efficient, multi-condition pneumatic design

The impeller adopts the optimization technology of CFD calculation + neural network + genetic algorithm to optimize the parameters under a wide range of working conditions to achieve high efficiency of both rated and partial load.

Industrial-grade magnetic bearing technology

Permanent magnet synchronous motor technology

- The permanent magnet synchronous motor has a compact structure, and the motor efficiency is > 95% in all working conditions, and the maximum is 97.5%.
- The space vector pulse width modulation technology is used to achieve energy saving in the full load operating range.
- H-class insulation design, real-time monitoring of stator temperature, to achieve precise cooling of the motor, high reliability.

Xinlei magnetic bearings

• Radial and axial integrated modular design, compact structure and stable

• No lubricating oil, zero friction, low power consumption, only 3~10% of conventional oil bearings, and the higher the speed, the more obvious the

Two-stage compression + gas enthalpy enhancement technology

- uniform air supply, and small pressure loss.
- tion.

High-efficiency evaporator

Flooded (standard)

- tube.
- improve the reliability of the flooded evaporator.

Falling film type (optional)

amount of bets.

• CFD simulation and optimization of the whole flow field, high aerodynamic efficiency, innovative pipeline return design,

• The two-stage compression and replenishment gas increase enthalpy, which is 6% higher than that of single-stage circula-

• The liquid inlet of the evaporator adopts a homogenizing distributor to make the liquid refrigerant effectively and evenly distributed and improve the heat transfer efficiency. • At the same time, the liquid blocking net on the upper part of the heat exchanger tube not only prevents the evaporator from carrying liquid, but also evenly distributes the refriger-

ant and pressure balance of the heat exchanger, avoids the appearance of dry pipes, and further improves the heat transfer efficiency of the heat exchanger.

• The heat exchange tube is equipped with a special high-efficiency full-liquid evaporation

• Add an air baffle above the liquid baffle to prevent the evaporator from carrying liquid and

• With the design and manufacturing technology of falling film evaporator, falling film evaporator has high heat transfer efficiency and refrigerant charging, the advantage of a small

Condenser

- The air intake adopts a baffle and a homogenized exhaust structure, which effectively reduces the noise and vibration of the condenser, and evenly distributes the gas to the upper part of the heat exchange tube to flush the liquid film, making the heat transfer efficiency of the condenser higher.
- The special subcooler design technology makes the unit supercooled up to 5°C, effectively improving the energy efficiency of the unit.

High-efficiency specialized breeding heat exchanger

- Adoption of new heat exchanger high-efficiency heat transfer technology.
- Application of anti-corrosion materials: according to the breeding water source and water quality requirements, heat exchanger tube material has copper (TP2) / stainless steel (S316L) / titanium tube (TA1) optional; tube plate and water chamber using carbon steel, stainless steel, titanium composite plate, etc., to achieve the requirements of corrosion prevention.

Direct drive + horizontally opposed technology

- Adopt direct drive, no transmission loss, 100% transmission efficiency.
- Impeller horizontally opposed, axial thrust offset each other more than 90%, has a good self-balancing, and the thrust bearing safety margin is greatly improved.
- Compared with tandem arrangement compressor, the vibration is smaller, the critical speed is higher, it is more suitable for large pressure ratio and high speed operation, and has higher reliability.

Active bearing control technology

Sensor feedback

- reduction control.
- and accurate shaft suspension.

Toroidal motor cooling technology

360° spiral toroidal cooling for high reliability

- CFD full flow field analysis and optimization design of motor cooling channel, 360° annular cooling, to achieve fast uniformity Cooling.
- The refrigerant is circulated for cooling, the cooling effect is better, and the motor can keep the temperature low under harsh working conditions, Longer service life.

Airborne refrigerant-cooled frequency converter

- active and refined refrigerant control.
- product reliability and applicability.

• The digital controller for magnetic bearings is equipped with 8 high-resolution position sensors to achieve superior vibration

• Five-degree-of-freedom active bearing control, 10kHZ position dynamic scanning and adjustment, µm-level control accuracy,

• The heat dissipation effect of refrigerant cooling is significantly better than that of air-cooled/water-cooled, cleaner than air-cooled inverters, and the service life of electrical components is longer. There is no dirty plugging problem of water-cooled inverter, which greatly reduces the probability of unexpected downtime.

• Full closed-loop temperature and humidity intelligent thermal management system,

• Multi-objective PI is used to control the flow rate and temperature difference to achieve high-load heat dissipation and anti-condensation functions, Further improve

Comparison with conventional centrifuges (oil-free operation)

- Compared to traditional oil-lubricated centrifuges, the oil-free system significantly improves the reliability of the unit and does not have to worry about the oil return of the unit.
- There is no need for regular oil inspections, which makes maintenance easier and more convenient, and maintenance costs are lower.

Maintenance projects	Xinlei magnetic levitation centrifuge	Conventional oil centrifuges
Replace the lubricating oil and filters	No need	Once a year
Oil pump maintenance/replacement	No need	Once a season
Oil pump insulation check	No need	Triennial
Oil quality testing	No need	Once a week
Oil filter pressure drop detection	No need	Once a month
Oil pump insulation check	No need	Triennial

() Intelligent control

Internet of Things technology

Based on the network, it provides monitoring and digital scientific energy-saving management solutions for the operation and maintenance of central air-conditioning equipment and manufacturers.

Product features

The cloud platform can record and provide the operation status and parameters of the central air conditioner that has been bound to the platform, as well as fault alarm and data recording and analysis. Users can log in to the platform to realize remote monitoring, energy-saving setting management, so that users can achieve real-time equipment management. At present, the IoT cloud platform provides Android, IOS, and PC clients, and opens the interface to realize the link with third-party software such as ERP, providing users with more possibilities.

Core equipment

Communication ammeter interface

central air Outdoor conditioning weather gauge Cloud disks |

Temperature and humidity sensors

Schematic diagram of IoT technology

Data cockpit

Digital com- puter room	 computer roomcon- equipment opera- figuration tionstatus and alarm 	Environmental • real-time monitoring monitoring • and data query
Intelligent control	Intelligent optimal control • on-demand of water temperature • cooling	Intelligent device • real-time dynamic start-stop optimization • optimization
Predictive maintenance	Fault diagnosis • system failure, hidden • fault, etc	Energy efficiency • statistics, diagnosis, analysis • evaluation
Systematic energy saving	Control energy intelligent optimi- saving z ation, energy	Management save people and electricity
energy saving	saving and consumption reduction	Energy Saving Cross-Contrast Confirmation Method

Crew configuration

Pro	oject	Standar
	Refrigeration conditions	
Operating conditions	Heating condition heat recovery condition	
On-board frequency	DFE rectification	
converters	AFE rectification	
Communication	Modbus RTU	
protocols	ModbusTCP/BACnet	
	Copper tubes	
Heat exchanger tube material	Stainless steel pipe/ copper-nickel alloy pipe/ titanium pipe/others	
The heat exchanger	0.635mm	
tube has a thick wall	0.711mm/0.889mm/others	5
Water takes over	The double device is connected to the left	
the direction	Double-device right-sided/ opposite-side pipe	
The water chamber	1.0MPa	
is under pressure	1.6MPa/2.0MPa/others	
Unit packaging	Thermoplastic packaging	
onnepackagnig	Wooden frame packing	
Form of transport	Transportation of the whole machine	
Form of transport	Dismantling and transporting in parts	
Vibration damping	Rubber damping pads	
Vibration damping device	Spring shock absorbers	
Clean-in-place device	End-cap cleaning-in-place	2
	In-line cleaning of pipeline	S
The thickness of the	20mm	
insulation layer of the unit	25mm/40mm/others	

rd	Optional	remark
		Optional filter cabinet, the funda mentalpower factor of the inverter can be higher than 0.97, and the total harmonic distortion rate can be less than 5%
		/
		/
		①Depending on the direction of the water pipe, the unit shape may change ②In terms of water connection, the operation screen shall prevail
		The pressure of the water chamber is differ- ent, and the shape of the unit may change
		/
		/
		Keep the inner wall of the condenser heat exchange tube clean, so that the chiller operation efficiency is the highest, so as to achieve the purpose of energy saving and consumption reduction
		/

Unit storage environment ---

Ambient temperature	-5°C~45°C (when the amb heat exchanger needs to l antifreeze should be adde
Relative humidity	< 90%, no condensation
Atmospheric corrosive gascomposition	Hydrogen chloride≤ 5mg/ Hydrogen dredging ≤5mg 10mg/m^3.
Installation require-	1、In a well-ventilated roo sunlight.
ments	2、The unit shall not be p Rated operating voltage±

The environment in which the unit is used

Voltage fluctuation range	Rated operating vol
The voltages are unbal- anced with each other	≤2%
frequency	Rated operating fre
Operating ambient tem- perature	3°C~40°C (i.e. the an
Relative temperature	< 90%, no condensa
Altitude	Less than 1000m
Atmospheric corro- sive gas composition	Hydrogen chloride≤ 5mg/m^3; hydroge dioxide≤10mg/m^3
	1. In a well-ventilate droplets and sunlig
Installation require- ments	2. The unit shall not leakage.
	 If it needs to be in tration corrosive ga design, please cont

pient temperature is lower than 0°C, the water side of the be depressurized and an appropriate amount of led or the water in the water side should be emptied)

J/m^3; chlorine≤1mg/m^3; Hydrogen fluoride≤ 5mg/m^3; g/m^3; nitrogen oxides≤ 5mg/m^3; Sulfur dioxide ≤

om, the unit shall not be stored in rain, water droplets and

placed near the facility with the risk of flammable gas leakage ±10%

oltage±10%

equency±2%HZ

mbient temperature of the installation space of the unit)

ation

≤ 5mg/m^3:; chlorine≤1mg/m^3; hydrogen cyanide≤ en sulfide≤ 5mg/m^3; Nitrogen oxide ≤5mg/m^3: sulfur 3.

ted room, the unit shall not be stored in rain, water ght.

ot be placed near the facility with the risk of flammable gas

installed in the atmospheric environment of high-concenas such as seaside and factory, the unit may need special itact the local sales agency of Xinlei for details

Water quality management -

During the operation of the unit, the quality of the water in the water system will directly affect the performance and life of the unit, so the water quality must be carefully checked before the installation of the unit, and the management of water quality must be strengthened after the operation of the unit.

	Drojoct		Ponchmark	lss	ue
	Project		Benchmark value	Corrode	Scaling
	PH (20℃)		6.5~8.0		
	Electrical conductivity (20°C)	µS/cm	< 800		
	Chloride ions CL-	mg(CL-)/L	< 200		
Datum items	Carbonate ions SO42-	mg(SO42-)/L	< 200		
	Full hardness	mg(CaCO3)/L	< 200		
	Acid consumption (pH=4.8)	mg(CaCO3)/L	< 100		
	Iron Fe	mg(Fe)/L	< 1.0		
	Sulfur ions S2-	mg(S2-)/L	Must not be detected		
Reference items	Ammonium ions NH4 +	mg(NH4 +)/L	< 1.0		
	Silicon oxide SiO2	mg(SiO2)/L	< 50		

Note: 1. The water quality index refers to GB/T18430.1-2007 "Vapor Compression Circulating Chilled Water (Heat Pump) Unit". If the index is not up to standard, refer to the GB50050-2007 "Design Code for Industrial Circulating Cooling Water Treatment" for treatment.

2. "■" indicates the clump element that causes rotting candles or scaling.
3. When it does not run for a long time in winter, the water should be discharged to prevent the heat exchange tube from freezing and cracking and damaging the unit.

0 000	Unit typ	e de	SCr	iptio	DN
		XL	MC	900	н
Compa	ny code				
Magne	tic levitation centrifuga	l compres	sor		
Cooling	g capacity/Heat produc	tion (RT)			

XLMC***H means water source heat pump unit

XLMC***HS means ground source heat pump unit

XLMC***HN means farming heat pump unit

XLMC***HT means farming heat pump unit (specific container)

Technical parameters

XLMC-H Series Magnetic Levitation Frequency Conversion Centrifugal (Water Source) Heat Pump Unit

	Mc	odel	XLMC	75H	85H	150H	200H	230H	350H	400H	450H
			RT	75	85	150	200	230	350	400	450
Cooling Capacity			kW	264	299	527	703	809	1231	1406	1582
Refrigeration Input Power				39.30	46.05	69.95	75.61	86.68	134.7	157.2	179.6
	Refrigera	ation COPc	W/W	6.71	6.49	7.54	9.30	9.33	9.13	8.95	8.81
	Heating	Capacity	kW	299	316	615	774	844	1406	1495	1582
	Heating l	nput Power	kW	56.60	60.62	116.3	128.9	137.9	232.5	247.5	262.8
	Heatir	ng COPh	W/W	5.28	5.22	5.29	6.00	6.12	6.05	6.04	6.02
	A	COP		6.08	5.93	6.55	7.85	7.92	7.78	7.67	7.58
	Motor Config	juration Power	kW	80	80	132	150	150	280	280	280
	Unit rate	ed Current	А	93.4	100.0	191.9	212.7	227.5	383.6	408.4	433.6
Maximum Operating Current			А	102.7	110.0	211.1	233.9	250.3	421.9	449.2	477.0
		Туре				Fι	ull Liquid I	Evaporat	or		
	Refrigeration	Water Flow Rate	m³/h	45.4	51.4	90.7	121.0	139.1	211.7	241.9	272.1
		Water Side Pressure Drop	kPa	86	65	67	85	96	79	78	87
Evaporator	Type Heat			Full Liquid Evaporator							
	Production	Water Flow Rate	m³/h	27.2	30.8	54.3	72.4	83.3	126.8	144.9	163.0
		Water Side Pressure Drop	kPa	31	23	24	30	34	28	28	31
	-	Tube Diameter	mm	DN100	DN150	DN150	DN150	DN150	DN200	DN200	DN200
		Туре				Shell A	nd Tube	Heat Exch	nanger		
	Refrigeration	Water Flow Rate	m³/h	27.2	30.8	54.3	72.4	83.3	126.8	144.9	163.0
		Water Side Pressure Drop	kPa	27	21	22	23	24	23	23	25
Condenser	Heat	Туре				Shell A	nd Tube	Heat Exch	nanger		
	Production	Water Flow Rate	m³/h	45.4	51.4	90.7	121.0	139.1	211.7	241.9	272.1
		Water Side Pressure Drop	kPa	76	57	60	64	66	65	63	70
	-	Tube Diameter	mm	DN100	DN150	DN150	DN150	DN150	DN200	DN200	DN200
Length Overall		mm	1870	1870	2600	2600	2600	4270	4270	4270	
Dimension		Width	mm	1155	1155	1700	1800	1800	1755	1755	1755
		Height	mm	1920	1920	1850	1900	1900	2020	2020	2020
	Transport	ation Weight	kg	1680	1700	2980	3480	3500	5170	5350	5380
	Operati	ng Weight	kg	1840	1880	3265	3810	3835	5750	6010	6040

Remarks:

1.The parameters in the above table are given according to the national standard GB/T19409-2013. Refrigeration working conditions: chilled water temperature 7 °C, water flow = refrigeration capacity x 0.172m³ / (h - kW); cooling water inlet temperature 18 °C, water flow = refrigeration capacity x 0.103m³ / (h - kW). Heating conditions: hot water temperature 45 °C, flow with the nominal refrigeration conditions of the evaporator water flow; heat source side of the water temperature 15 ℃, flow with the nominal refrigeration conditions of the condenser water flow.

2.Energy-efficiency level implementation standard: GB19577-2024 judgment.

3.Evaporator, condenser water side pressure of 1.0MPa, using flange connection, flange standard HG/T20592, higher than 1.0MPa working pressure should be specified in the ordering process. 4.Due to the improvement and optimization of the product, the above parameters may be changed, please refer to the software selection and the product shall

prevail.

	Model		XLMC	500H	550H	600H	700HD	800HD	900HD	1000HD	1100HD	
	Cooling Capacity		RT	500	550	600	700	800	900	1000	1100	
		kW	1758	1934	2110	2461	2813	3164	3516	3868		
Refrigeration Input Power			kW	197.1	226.2	257.3	261.6	305.2	348.7	382.7	439.2	
	Refrigeration	СОРс	W/W	8.92	8.55	8.20	9.41	9.22	9.07	9.19	8.81	
	Heating Cap	pacity	kW	1758	1934	2110	2813	2990	3164	3516	3868	
	Heating Input	Power	kW	276.0	309.5	342.5	451.4	490.1	520.4	541.1	612.7	
	Heating C	OPh	W/W	6.37	6.25	6.16	6.23	6.10	6.08	6.50	6.31	
	ACOP			7.80	7.54	7.30	8.01	7.85	7.76	8.00	7.71	
Мс	otor Configura	tion Power	kW	320	320	360	2*280	2*280	2*280	2*320	2*320	
	Unit rated Cu	urrent	А	455.4	510.7	565.1	744.8	808.7	858.6	892.9	1011	
Ma	ximum Operat	ing Current	А	500.9	561.7	621.6	819.3	889.6	944	982.2	1112	
		Туре		Full Liquid Evaporator								
	Refrigeration	Water Flow Rate	m³/h	302.4	332.6	362.9	423.3	483.8	544.3	604.8	665.2	
Evaporator		Water Side Pressure Drop	kPa	78	87	95	74	81	85	81	82	
		Туре		Full Liquid Evaporator								
	Heat	Water Flow Rate	m³/h	181.1	199.2	217.3	253.5	289.7	325.9	362.1	398.4	
	Production	Water Side Pressure Drop	kPa	28	31	34	27	29	30	29	29	
	Tube	e Diameter	mm	DN250	DN250	DN250	DN200	DN200	DN200	DN250	DN250	
		Туре				She	ll And Tube	Heat Exchar	nger			
	Refrigeration	Water Flow Rate	m³/h	181.1	199.2	217.3	253.5	289.7	325.9	362.1	398.4	
		Water Side Pressure Drop	kPa	23	25	27	22	22	26	23	24	
Condenser		Туре				She	ll And Tube	Heat Exchar	nger			
	Heat	Water Flow Rate	m³/h	302.4	332.6	362.9	423.3	483.8	544.3	604.8	665.2	
	Production	Water Side Pressure Drop	kPa	65	70	75	60	61	73	65	66	
	Tube	e Diameter	mm	DN250	DN250	DN250	DN200	DN200	DN200	DN250	DN250	
		ength	mm	4400	4400	4400	5250	5250	5250	5330	5330	
Overall Dimension		Width	mm	1800	1800	1800	2550	2550	2550	2650	2650	
		Height	mm	2100	2100	2100	2200	2200	2200	2350	2350	
	Transportatior	n Weight	kg	6100	6220	6250	10620	10780	10900	11710	11950	
	Operating W	/eight	kg	6820	7020	7065	11820	12160	12400	13640	14030	

Remarks:

1.The parameters in the above table are given according to the national standard GB/T19409-2013. Refrigeration working conditions: chilled water temperature 7 °C, water flow = refrigeration capacity x 0.172m³ / (h - kW); cooling water inlet temperature 18 °C, water flow = refrigeration capacity x 0.103m³ / (h - kW). Heating conditions: hot water temperature 45 °C, flow with the nominal refrigeration conditions of the evaporator water flow; heat source side of the water temperature 15 ℃, flow with the nominal refrigeration conditions of the condenser water flow.

2.Energy-efficiency level implementation standard: GB19577-2024 judgment.

3.Evaporator, condenser water side pressure of 1.0MPa, using flange connection, flange standard HG/T20592, higher than 1.0MPa working pressure should be specified in the ordering process. 4.Due to the improvement and optimization of the product, the above parameters may be changed, please refer to the software selection and the product shall

prevail.

XLMC-HS Series Magnetic Levitation Frequency Conversion **Centrifugal (Ground Source) Heat Pump Unit**

	Model		XLMC	75HS	85HS	150HS	200HS	230HS	350HS	400HS	450HS
			RT	75	85	150	200	230	350	400	450
	Cooling Capa	city	kW	264	299	527	703	809	1231	1406	1582
Re	efrigeration Inpu	t Power	kW	41.72	49.15	76.55	82.83	95.03	147.7	172.4	194.6
Refrigeration COPc		W/W	6.32	6.08	6.89	8.49	8.51	8.33	8.16	8.13	
	Heating Capa	city	kW	299	316	615	774	844	1406	1495	1582
Heating Input Power			kW	58.49	62.54	119.0	134.8	145.2	242.9	260.0	277.5
	Heating COF	Ph	W/W	5.11	5.06	5.17	5.74	5.81	5.79	5.75	5.70
ACOP				5.79	5.63	6.13	7.28	7.32	7.21	7.10	7.06
Motor Configuration Power			kW	80	80	132	150	150	280	280	280
Unit rated Current			А	96.5	103.2	196.4	222.4	239.6	400.8	429.0	457.9
Maximum Operating Current			А	106.2	113.5	216.0	244.6	263.6	440.9	471.9	503.7
		Туре					Full Liquid	Evaporator			
	Refrigeration	Water Flow Rate	m³/h	45.4	51.4	90.7	121.0	139.1	211.7	241.9	272.1
		Water Side Pressure Drop	kPa	86	65	67	85	96	79	78	87
Evaporator		Туре		Full Liquid Evaporator							
	Heat Production	Water Flow Rate	m³/h	56.7	64.3	113.4	151.2	173.9	264.6	302.4	340.2
		Water Side Pressure Drop	kPa	140	106	109	139	157	129	127	142
	Tube	Diameter	mm	DN100	DN100	DN150	DN150	DN150	DN200	DN200	DN200
		Туре				Shell	l And Tube	Heat Excha	inger		
	Refrigeration	Water Flow Rate	m³/h	56.7	64.3	113.4	151.2	173.9	264.6	302.4	340.2
		Water Side Pressure Drop	kPa	97	68	72	78	81	79	77	88
Condenser		Туре				Shell	l And Tube	Heat Excha	inger		
	Heat	Water Flow Rate	m³/h	45.4	51.4	90.7	121.0	139.1	211.7	241.9	272.1
	Production	Water Side Pressure Drop	kPa	62	44	46	50	52	51	49	56
	Tube	Diameter	mm	DN100	DN100	DN150	DN150	DN150	DN200	DN200	DN200
	Le	ength	mm	1870	1870	2600	2600	2600	4270	4270	4270
Overall Dimension	V	Vidth	mm	1155	1155	1700	1800	1800	1755	1755	1755
	Н	eight	mm	1920	1920	1850	1900	1900	2020	2020	2020
	Transportation Weight kg			1680	1700	2980	3480	3500	5170	5350	5380
	Operating Wei	ght	kg	1840	1880	3265	3810	3835	5750	6010	6040

Remarks:

1. the parameters in the above table are given according to the national standard GB/T19409-2013. Refrigeration conditions: chilled water temperature 7 °C, water flow = refrigeration x 0.172m³ / (h - kW); cooling water inlet temperature of 25 °C, water flow = refrigeration x 0.215m³ / (h - kW). Heating conditions: hot water temperature 45 °C, flow with the nominal refrigeration conditions of the evaporator water flow; heat source side of the water temperature 10 °C, flow with the nominal refrigeration conditions of the condenser water flow.

energy-efficiency level implementation standard: GB19577-2024 judgment.

3.evaporator, condenser water side of the pressure of 1.0MPa, the use of flange connection, flange standard HG/T20592, higher than 1.0MPa working pressure should be specified when ordering. 5.Due to the improvement and optimization of the product, the above parameters may be changed, please refer to the software selection and the product shall prevail.

	Model		XLMC	500HS	550HS	600HS	700HDS	800HDS	900HDS	1000HDS	1100HDS
	Cooling Capacity		RT	500	550	600	700	800	900	1000	1100
Cooling Capacity		kW	1758	1934	2110	2461	2813	3164	3516	3868	
Refrigeration Input Power			kW	216.0	247.9	273.6	286.9	334.7	377.9	419.4	481.4
	Refrigeration C	OPc	W/W	8.14	7.80	7.71	8.58	8.40	8.37	8.38	8.03
	Heating Capac	ity	kW	1758	1934	2110	2813	2990	3164	3516	3868
	Heating Input Po	ower	kW	284.5	319.6	354.6	471.7	509.8	544.2	552.4	622.7
	Heating COP	h	W/W	6.18	6.05	5.95	5.96	5.87	5.81	6.37	6.21
	ACOP			7.28	7.03	6.94	7.43	7.29	7.25	7.50	7.23
Mo	tor Configuratior	ר Power	kW	320	320	360	2*280	2*280	2*280	2*320	2*320
	Unit rated Curr	ent	А	469.4	527.4	585.0	778.2	841.2	897.9	911.4	1027
Maximum Operating Current A			А	516.3	580.1	643.5	856.1	925.3	987.7	1003	1130
Туре							Full Liquid	Evaporato	r		
	Refrigeration	Water Flow Rate	m³/h	302.4	332.6	362.9	423.3	483.8	544.3	604.8	665.2
		Water Side Pressure Drop	kPa	78	87	95	74	81	85	81	82
Evaporator		Туре		Full Liquid Evaporator							
	Heat Production	Water Flow Rate	m³/h	378.0	415.8	453.6	529.2	604.8	680.3	755.9	831.5
		Water Side Pressure Drop	kPa	127	142	155	121	132	139	132	134
	Tube [Diameter	mm	DN250	DN250	DN250	DN300	DN300	DN300	DN300	DN300
		Туре				Shell	l And Tube	Heat Excha	anger		
	Refrigeration	Water Flow Rate	m³/h	378.0	415.8	453.6	529.2	604.8	680.3	755.9	831.5
		Water Side Pressure Drop	kPa	79	87	96	72	73	83	79	82
Condenser		Туре			n	Shell	And Tube	Heat Excha	anger		
	Heat	Water Flow Rate	m³/h	302.4	332.6	362.9	423.3	483.8	544.3	604.8	665.2
	Production	Water Side Pressure Drop	kPa	51	56	61	46	47	53	51	52
	Tube [Diameter	mm	DN250	DN250	DN250	DN300	DN300	DN300	DN300	DN300
	Le	ngth	mm	4400	4400	4400	5250	5250	5250	5330	5330
Overall Dimension	W	'idth	mm	1800	1800	1800	2550	2550	2550	2650	2650
	He	eight	mm	2100	2100	2100	2200	2200	2200	2350	2350
	Transportation Weight kg			6100	6220	6250	10620	10780	10900	11710	11950
	Operating Weig	ght	kg	6820	7020	7065	11820	12160	12400	13640	14030

Remarks:

1. the parameters in the above table are given according to the national standard GB/T19409-2013. Refrigeration conditions: chilled water temperature 7 °C, water flow = refrigeration x 0.172m³ / (h - kW); cooling water inlet temperature of 25 °C, water flow = refrigeration x 0.215m³ / (h - kW). Heating conditions: hot water temperature 45 °C, flow with the nominal refrigeration conditions of the evaporator water flow; heat source side of the water temperature 10 °C, flow with the nominal refrigeration conditions of the condenser water flow.

2. energy-efficiency level implementation standard: GB19577-2024 judgment.

3.evaporator, condenser water side of the pressure of 1.0MPa, the use of flange connection, flange standard HG/T20592, higher than 1.0MPa working pressure should be specified when ordering. 5.Due to the improvement and optimization of the product, the above parameters may be changed, please refer to the software selection and the product shall

prevail.

XLMC-HN Series Magnetic Levitation Frequency Conversion Centrifugal (Farming) Heat Pump Unit

	Model	XLMC	75HN	85HN	170HN	200HN	230HN	250HN	400HN	450HN	500HN	550HN	600HN	650HN
		RT	75	85	170	200	230	250	400	450	500	550	600	650
неа	ting Capacity	kW	263.7	298.9	597.7	703.2	808.7	879.0	1406	1582	1758	1934	2110	2285
In	put Power	kW	31.7	36.5	62.7	65.1	73.8	80.1	130.2	148.4	168.1	179.1	199.0	221.0
He	ating COP _h	W/W	8.33	8.18	9.54	10.81	10.96	10.98	10.80	10.66	10.46	10.80	10.60	10.34
Motor Co	nfiguration Power	kW	80	80	132	135	135	135	280	280	280	320	320	320
Unit I	Rated Current	A	52.2	60.3	103.4	107.3	121.8	132.1	214.9	244.9	277.3	295.4	328.4	364.7
Maximum	Operating Current	A	57.5	66.3	113.7	118.1	134.0	145.4	236.4	269.4	305.0	325.0	361.2	401.2
	Туре						Ful	l Liquid	Evapora	ator				
Evaporator	Water Flow Rate	m³/h	39.9	45.1	92.0	109.8	126.4	137.4	219.5	246.6	273.5	301.8	328.6	355.1
Evaporator	Water Side Pressure Drop	kPa	72	65	69	70.0	79.3	85.1	85.0	81.1	71.2	77.7	83.9	91.0
	Tube Diameter	mm	DN100	DN100	DN150	DN150	DN150	DN150	DN200	DN200	DN200	DN250	DN250	DN250
	Туре						Shell An	d Tube	Heat Exc	changer				
Condenser	Water Flow Rate	m³/h	45.4	51.4	102.8	121.0	139.1	151.2	241.9	272.1	302.4	332.6	362.9	393.1
condenser	Water Side Pressure Drop	kPa	72.1	53.5	69.2	59.9	61.8	77.2	76.0	72.4	66.3	71.2	76.3	82.1
	Tube Diameter	mm	DN100	DN100	DN150	DN150	DN150	DN150	DN200	DN200	DN200	DN250	DN250	DN250
	Length	mm	1870	1870	2600	2600	2600	2600	4270	4270	4270	4400	4400	4400
Overall Dimension	Width	mm	1155	1155	1700	1800	1800	1800	1755	1755	1755	1800	1800	1800
	Height	mm	1920	1920	1850	1900	1900	1900	2020	2020	2020	2100	2100	2100
Transp	ortation Weight	kg	1680	1700	2980	3480	3500	3525	5170	5350	5360	6100	6220	6240
Ope	rating Weight	kg	1840	1880	3265	3810	3835	3850	5750	6010	6030	6820	7020	7055

Remarks:

Nominal working conditions: heat source water inlet/outlet temperature 16°C/11°C°C, hot water inlet/outlet temperature 25°C/30°C.
 evaporator, condenser water-side pressure is 1.0MPa, using flange connection, flange standard HG/T20592, higher than 1.0MPa working pressure should be specified in the order.
 Due to the improvement and optimization of the products, the above parameters may be changed, please refer to the software selection and the product

3.Due to the improvement and optimization of the products, the above parar shall prevail.

XLMCHT Series MagLev VFD Centrifugal (Aquaculture) Heat Pump Unit (TBD Container)

М	odel	XLMC	75HT	85HT	200HT	400HT	450HT	500HT	550HT
		RT	75	85	200	400	450	500	550
Heating	g Capacity	kW	263.7	298.9	703.2	1406	1582	1758	1934
Input	: Power	kW	59.8	66.7	148.0	287.0	312.1	343.4	365.6
Heati	ng COP _h	W/W	4.41	4.48	4.75	4.90	5.07	5.12	5.29
Motor Config	guration Power	kW	80	80	160	360	360	460	460
Unit Rat	ed Current	А	98.7	110.1	244.3	473.6	514.9	566.5	603.2
Maximum Op	erating Current	A	108.5	121.1	268.7	520.9	566.4	623.2	663.5
	Туре			Full-Liquid	l Evaporator Fo	or Farming (Tit	anium Or Staiı	nless Steel)	
Fupporater	Water Flow Rate	m³/h	35.1	39.9	95.5	192.5	218.5	243.3	269.7
Evaporator	Water Side Pressure Drop	kPa	78	79	77	74	75	75	76
	Tube Diameter	mm	DN100	DN100	DN150	DN200	DN200	DN250	DN250
	Туре		(Shell And Tube	Heat Exchang	er For Farming	g (Titanium Or	Stainless Steel)
Condoncor	Water Flow Rate	m³/h	45.4	51.4	121.0	241.9	272.1	302.4	332.6
Condenser	Water Side Pressure Drop	kPa	87	88	87	82	84	83	85
	Tube Diameter	mm	DN100	DN100	DN150	DN200	DN200	DN250	DN250
	Length	mm	2670	2670	2800	4580	4580	4620	4620
Overall Dimension	Width	mm	1155	1155	1700	1800	1800	2040	2040
	Height	mm	1920	1920	1850	2100	2100	2265	2265
	ation Weight ess Steel)	kg	1770	1790	3050	5450	5650	6350	6480
	Operating Weight (Stainless Steel)			1985	3335	6125	6330	7080	7310
	Transportation Weight (Titanium)			1580	2820	4845	450	5600	5740
	ng Weight Inium)	kg	1730	1655	3105	5525	5635	6330	6490

Remarks:

Nominal working condition: the temperature of inlet and outlet of heat source water is 12 ° C/7 ° C, the temperature of inlet and outlet of hot water is 40°C/45°C; and the pressure of water side of evaporator and condenser is 1.0MPa, with flange connection.
 evaporator, condenser water-side pressure is 1.0MPa, using flange connection, flange standard HG/T20592, higher than 1.0MPa working pressure should be specified in the order.

3.Due to the improvement and optimization of the product, the above parameters may be changed, please refer to the software selection and the product shall prevail.

XLMC-H(S)(N) series single motor head outline drawing(75-85RT) ----

		Size		Nozzle positioning dimensions								
Model	Length(A)	Width(B)	High(C)	F	L	К		Н	J	Evaporator	Condenser	
MOUEL	mm	mm	mm	mm	mm	mm	mm	mm	mm	nozzle diameter	nozzle diameter	
XLMC75H (S)(N)	1070	1155	1020	006	1076	360	331	611	210			
XLMC85H (S)(N)	1870	CCII	1920	996	1276	500	221	011	210	DN100	DN100	

XLMC-H(S)(N) series single motor head outline drawing(150RT-600RT)

		Size		Nozzle positioning dimensions									
Model	Length(A)	Width(B)	High(C)	F	L	К		Н	J	Evaporator	Condenser		
	mm	mm	mm	mm	mm	mm	mm	mm	mm	nozzle diameter	nozzle diameter		
XLMC150H (S)	2600	1700	1850	376	706	375	391	731	725	DN150	DN150		
XLMC170HN	2000	1700	1000	570	700	575	291	121	725	DIVISO	DNISU		
XLMC200H (S) (N)													
XLMC230H (S) (N)	2600	1800	1900	336	796	400	416	756	775	DN150	DN150		
XLMC250HN													
XLMC350H (S)													
XLMC400H (S) (N)	4270	1755	0000	AEG	076	120	166	076	05.0				
XLMC450H (S) (N)		1755	2020	456	836	438	466	826	850	DN200	DN200		
XLMC500HN													

		Size				Nozzle positioning dimensions									
Model	Length(A)	Width(B)	High(C)	F	L	К		Н	J	Evaporator	Condenser				
Model	mm	mm	mm	mm	mm	mm	mm	mm	mm	nozzle diameter	nozzle diameter				
XLMC500H (S) (N)															
XLMC550H (S) (N)	4400	1900	2100	106	006	450	106	016	050						
XLMC600H (S) (N)	4400	1800	2100	486	906	450	496	916	850	DN250	DN250				
XLMC650HN															

XLMC-HD(S) series single motor head outline drawing(700RT-1100RT)

		Size		Nozzle positioning dimensions										
Model	Length(A)	Width(B)	High(C)	F	L	К	l I	Н	J	Evaporator	Condenser			
	mm	mm	mm	mm	mm	mm	mm	mm	mm	nozzle diameter	nozzle diameter			
XLMC700HD(S)														
XLMC800HD(S)	4270	1755	2020	456	836	438	466	826	850	DN300	DN300			
XLMC900HD(S)														
XLMC1000HD(S)	4400	4400 1800	2100	106	006	450	106	016	950					
XLMC1100HD(S)	4400		2100	486	906	450	496	916	850	DN300	DN300			

XLMC-HT series single motor head outline drawing(75-85RT)

_ _ _ _ _ _

	Size				Nozzle positioning dimensions									
Model	Length(A)	Width(B)	High(C)	F	L	К		Н	J	Evaporator	Condenser			
Model	mm	mm	mm	mm	mm	mm	mm	mm	mm	nozzle diameter	nozzle diameter			
XLMC75HT	2670	1155	1920	996	1276	360	331	611	210	DN100	DN100			
XLMC85HT	2070	CCII	1920	990	1270	200	155	011	210	DIVIOU	DIVIOU			

XLMC-HT series single motor head outline drawing(200RT)

	Size				Nozzle positioning dimensions									
Model	Length(A)	Width(B)	High(C)	F	L	К		Н	J	Evaporator	Condenser			
	mm	mm	mm	mm	mm	mm	mm	mm	mm	nozzle	nozzle			
										diameter	diameter			
XLMC200HT	2800	1700	1850	376	706	375	391	731	725	DN150	DN150			

XLMC-HT series single motor head outline drawing (400RT-550RT) ---

		Size			Nozzle positioning dimensions									
Model	Length(A)	Width(B)	High(C)	F	L	K		Н	J	Evaporator	Condenser			
linder	mm	mm	mm	mm	mm	mm	mm	mm	mm	nozzle diameter	nozzle diameter			
XLMC400HT	4580	1755	2020	456	836	438	466	826	850	DN200	DN200			
XLMC450HT	4500	0.1	2020	400	020	450	400	020	010	DN200	DN200			
XLMC500HT	4620	2040	2265	530	950	530	520	940	975	DN250	DN250			
XLMC550HT	4020	2040	2205	020	900	050	520	940	975	DNZJU	DNZOU			

Wiring Options

_ _ _ _ _ _ _ _ _ .

XLMC-H Series	Rated Input Side Current (A)	Input Side Threaded Hole	Recommended Input Wire Size(mm ²)
XLMC75H	102.7	<u>1*</u> Ф0	3×95+50
XLMC85H	110.0	4*Φ8	3×95+50
XLMC150H	211.1		3×120+70
XLMC200H	233.9		3×150+70
XLMC230H	250.3		3×150+70
XLMC350H	421.9		2×(3×120+70)
XLMC400H	449.2	8*Φ13	2×(3×150+70)
XLMC450H	477.0		2×(3×185+95)
XLMC500H	500.9		2×(3×185+95)
XLMC550H	561.7		2×(3×185+95)
XLMC600H	621.6		2×(3×240+120)
XLMC700HD	819.3		2×2×(3×120+70)
XLMC800HD	889.6		2×2×(3×150+70)
XLMC900HD	944.0	2×8×Ф13	2×2×(3×185+95)
XLMC1000HD	982.2		2×2×(3×150+70)
XLMC1100HD	1112.0		2×2×(3×240+120)

XLMC-HS Series	Rated Input Side Current (A)	Input Side Threaded Hole	Recommended Input Wire Size(mm ²)
XLMC75HS	106.2	4*Φ8	3×95+50
XLMC85HS	113.5	4 Ψδ	3×95+50
XLMC150HS	216.0		3×120+70
XLMC200HS	244.6		3×150+70
XLMC230HS	263.6		3×150+70
XLMC350HS	440.9		2×(3×120+70)
XLMC400HS	471.9	8*Φ13	2×(3×150+70)
XLMC450HS	503.7		2×(3×185+95)
XLMC500HS	516.3		2×(3×185+95)
XLMC550HS	580.1		2×(3×185+95)
XLMC600HS	643.5		2×(3×240+120)
XLMC700HDS	856.1		2×2×(3×120+70)
XLMC800HDS	925.3		2×2×(3×150+70)
XLMC900HDS	987.7	2×8×Ф13	2×2×(3×185+95)
XLMC1000HDS	1003.0		2×2×(3×185+95)
XLMC1100HDS	1130.0		2×2×(3×240+120)

XLMC-HN Series	Rated Input Side Current (A)	Input Side Threaded Hole	Recommended Input Wire Size(mm ²)
XLMC75HN	57.5	4*本 0	3×70+35
XLMC85HN	66.3	4*Φ8	3×70+35
XLMC170HN	113.7		3×95+50
XLMC200HN	118.1		3×95+50
XLMC230HN	134.0		3×95+50
XLMC250HN	145.4		3×95+50
XLMC400HN	236.4	8*Φ13	3×150+70
XLMC450HN	269.4	ο ΨΤΣ	3×150+70
XLMC500HN	305.0		3×150+70
XLMC550HN	325.0		3×185+95
XLMC600HN	361.2		3×240+120
XLMC650HN	401.2		2×(3×120+70)

XLMC-HT Series	Rated Input Side Current (A)	Input Side Threaded Hole	Recommended Input Wire Size(mm ²)
XLMC75HT	108.5	4*Φ8	3×95+50
XLMC85HT	121.1		3×95+50
XLMC200HT	268.7	8*Φ13	3×150+70
XLMC400HT	520.9		2×(3×150+70)
XLMC450HT	566.4		2×(3×185+95)
XLMC500HT	623.2		2×(3×240+120)
XLMC550HT	663.5		2×(3×240+120)

Note:

1.Recommended table 2X (3X185 + 95) for a phase of the copper row to be connected to two of the same specifications of the cable, wiring for 6 185m m² cable, 2 95m m² cable; 2x2x (3X120 + 70) for a single inverter on a phase of the copper row to be connected to two of the same specifications of the cable wiring for 6 120m m² cable, 2 70m m² cable, a total of two inverters, the cable is recommended! Model YJV-0.6/1KV or equivalent specifications. 2.The cable length should not be too long, cable voltage drop > 2%, according to the unit operating current to re-selection. 3. Wiring need to pay attention to the size of the copper nose, to ensure that the electrical gap in line with the standard. 4.Cable assembly and connection is completed, pay attention to lock the cable connector, and the unit to do a reliable waterproof, rodent-proof measures.

DD DII Case

Project type : summer cooling, winter heating Cooling Capacity: 527 Project area : 27000m³ Chilled water: 12/7°C Quantity: XLMC150x2 units Cooling Water: 30/35°

Minghua Gear Co., Ltd, coastal area, relatively warm and humid, and precision instruments on the air temperature and humidity requirements are very high. The plant needs cooling in summer and heating in winter.

The first phase of the project adopts two 150RT magnetic levitation heat pump units to replace 10 air-cooled modules in the original plant area, and the second phase adds one 350RT magnetic levitation heat pump unit to meet the cooling and heating needs of the expanded plant area.

27kW	Heating Capacity: 600kW	Location: Taizhou
C	Hot water: 40/45°C	Minimum ambient
5°C	Heat Source: Energy Tower	temperature in winter: -4°C

First Phase Energy Saving Effect 150,000 yuan

Saving in operating costs

80 tons/year Saving

217 tons/year Reduce

carbon emissions

680kg/year SO_2

117kg/year

standard coal

NOx Emission reduction Emission reduction

Minhang Ecology Co.

Heat production capacity: 1700kW Heat source: 10/5°C Heat source water temperature range: 8~15°C Hot water: 40/45°C Hot water outlet temperature range: 20~45°C

Minhang eel culture is an indirect water supply culture with intermediate plate exchange. The heat pump controls the temperature according to the season of fry/adult fish (winter: juvenile water temperature is controlled at 15~21 ° C/adult water temperature is controlled at 21~25 ° C; summer: water temperature is controlled at 25~31 ° C). In this project, river water (8-16 ° C) was used as the source of heat and cold. In order to meet the needs of fry and adult fish at the same time, the project set up an intermediate water tank. The intermediate water tank (40~45 ° C) + plate exchange is used for heating in winter and direct cooling in summer, and the COP of heating in winter is between 4.5~6.5 and COP of cooling in summer is between 8~13, which is highly efficient and energy-saving.

Cooling capacity: 1934kW Chilled water: 30/23.6°C Chilled water outlet temperature range: 19~30°C Cooling water: 30/36.3°C Cooling water inlet temperature range: 28~35°C

Xishui County Fu Nong Company

Heat production capacit: 1550kW Heat source: 12/7°C Heat source water temperature range: 8~15°C Hot water: 10/16°C Hot water outlet temperature range: 15~23°C

Funon eel culture is a direct water supply culture. The demand for aquaculture is divided into winter and summer, and according to the different fry and adult fish, different temperatures are required. The heat pump unit of this project is mainly used for fish fry culture, controlling the water temperature between 15~21°C in winter and 25~31°C in summer. The heat source of this project is mainly well water in winter, and the temperature is 8~16°C; in summer, when the water temperature of the fish pond exceeds 30°C, river water is used as the cold source, and the temperature is between 28~35°CC. The project is a direct water supply project, i.e., hot water or cold water is taken directly from the fish pond and returned to the fish pond after heating or cooling. The heating COP in winter is between 8.5~15 and the cooling COP in summer is between 8~13, which achieves the purpose of high efficiency, energy saving and carbon reduction.

Cooling capacity: 1400kW Chilled water: 30/24°C Chilled water outlet temperature range: 19~30°C Cooling water: 30/36°C Cooling water inlet temperature range: 28~35°C

